xyz f

0 0 0

0 1 0

100

101

1 1 0

0

1

1

0

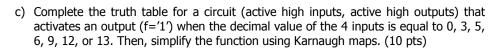
1

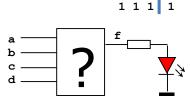
0 0 1 1

0 1 1

Homework 1

(Due date: January 24th @ 5:30 pm) Presentation and clarity are very important!

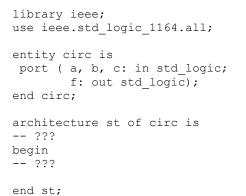

PROBLEM 1 (25 PTS)

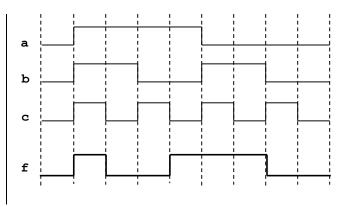

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (9 pts)

$$\checkmark \quad F = A(C + \bar{B}) + \bar{A} \qquad \qquad \checkmark \quad F = (Y + Z)(\bar{Y} + X) \qquad \qquad \checkmark \quad F(X, Y, Z) = \prod(M_0, M_1, M_4, M_5)$$

b) For the following Truth table: (6 pts)

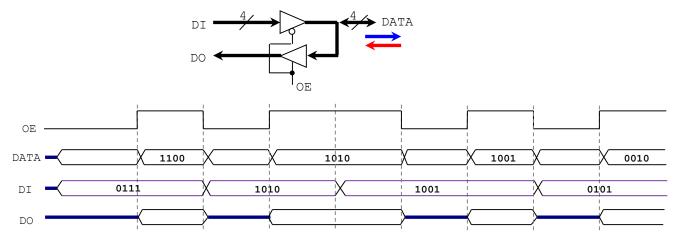
- Provide the Boolean function using the Canonical Sum of Products (SOP), and Product of Sums (POS).
- Express the Boolean function using the minterms and maxterms representations.
- Sketch the logic circuit as Canonical Sum of Products and Product of Sums.

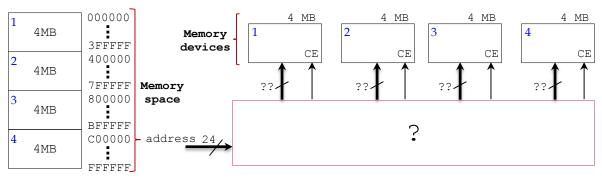



PROBLEM 2 (15 PTS)

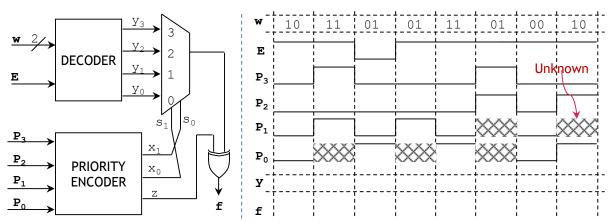
a) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (5 pts)

library ieee; use ieee.std_logic_1164.all;	
<pre>entity circ is port (a, b, c: in std_logic;</pre>	a
<pre>f: out std_logic); end circ;</pre>	b
architecture st of circ is signal x, y: std_logic; begin	c
<pre>x <= a and b; y <= x nand c; f <= y xor (not b); end st;</pre>	f


b) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (10 pts)


PROBLEM 3 (10 PTS)

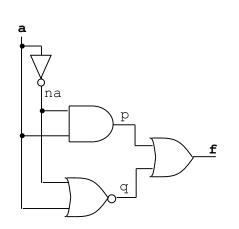
• For the following 4-bit bidirectional port, complete the timing diagram (signals *DO* and *DATA*):

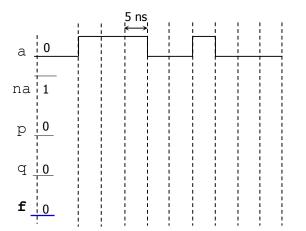

PROBLEM 4 (10 PTS)

- A 24-bit address line in a μ processor handles up to $2^{24} = 16 MB$ of addresses, each address containing onebyte of information. We want to connect four 4MB memory chips to the μ processor.
- Sketch the circuit that: i) addresses the memory chips, and ii) enables only one memory chip (via CE: chip enable) when the address falls in the corresponding range. Example: if address = 0x5FFFFF, \rightarrow only memory chip 2 is enabled (CE=1). If address = 0xD00FA0, \rightarrow only memory chip 4 is enabled.
- Complete the number of bits '??' required for each 4MB memory chip.

PROBLEM 5 (15 PTS)

• Complete the timing diagram of the circuit shown below:


PROBLEM 6 (15 PTS)


- In these problems, you MUST show your conversion procedure.
 - a) Convert the following unsigned integer numbers to their binary and hexadecimal representation. (4 pts) 124, 115, 128, 255.
 - b) What is the minimum number of bits required to represent: (3 pts)
 - ✓ 50,000 colors?
 - ✓ 32679 symbols?
 - ✓ 65536 memory addresses in a computer?
 - c) A microprocessor can handle addresses from 0×0000 to $0 \times 1FFF$. How many bits do we need to represent those addresses? (2 pts).
 - d) Complete the following table. (6 pts)

Decimal	BCD	Binary number	Reflective Gray Code
128			
		10101011	
	0100 1001		
			10001001
		1110010	
	0110 0011 0001		

PROBLEM 7 (10 PTS)

• Complete the timing diagram of the digital circuit shown in the figure below. You must consider the propagation delays. Assume that the propagation delay of every gate is 5 ns. The initial values of the signals are specified in the figure.

